Experimental and molecular modeling approach to optimize suitable polymers for fabrication of stable fluticasone nanoparticles with enhanced dissolution and antimicrobial activity

نویسندگان

  • Shaimaa Ahmed
  • Thirumala Govender
  • Inamullah Khan
  • Nisar ur Rehman
  • Waqar Ali
  • Syed Muhammad Hassan Shah
  • Shahzeb Khan
  • Zahid Hussain
  • Riaz Ullah
  • Mansour S Alsaid
چکیده

Background and aim The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity. Methods Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles. Results and conclusion The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clarithromycin Dissolution Enhancement by preparation of Aqueous Nanosuspensions Using Sonoprecipitation Technique

Clarithromycin (CLM) is a member of macrolide family with broad spectrum antibiotic activity. It is practically insoluble in water and its poor solubility is pH dependent. In this study, series of nanosuspensions containing CLM and stabilizer such as HPMC, NaCMC, polysorbate 80, poloxamer 188 and polyvinyl alcohol in various ratios were prepared using sonoprecipitation method. Briefly, CLM was ...

متن کامل

Clarithromycin Dissolution Enhancement by preparation of Aqueous Nanosuspensions Using Sonoprecipitation Technique

Clarithromycin (CLM) is a member of macrolide family with broad spectrum antibiotic activity. It is practically insoluble in water and its poor solubility is pH dependent. In this study, series of nanosuspensions containing CLM and stabilizer such as HPMC, NaCMC, polysorbate 80, poloxamer 188 and polyvinyl alcohol in various ratios were prepared using sonoprecipitation method. Briefly, CLM was ...

متن کامل

Quantum chemical study of Interaction of PLGA polymeric nanoparticles as drug delivery with anti-cancer agents of thiazoline

Thiazoles derivatives are consisted in chemical compounds such as antimicrobial and anticancer medicine. Since polylactic-co-glycolic acid (PLGA) polymeric nanoparticles has been conversed about nanomedicine applications and particularly as drug delivery systems. Because of molecular self-assemblies and biodegradability of PLGA polymer, it can be used to carry anti-cancer and antimicrobial drug...

متن کامل

QSAR modeling of antimicrobial activity with some novel 1,2,4 triazole derivatives, comparison with experimental study

Our study performed upon an extended series of 28 compounds of 1,2,4-triazole derivatives that demonstrate substantial in vitro antimicrobial activities by serial plate dilution method, using quantitative structure-activity relationship (QSAR) methods that imply analysis of correlations and multiple linear regression (MLR); a significant collection of molecular descriptors was used e.g., Edge a...

متن کامل

Kinetics activity of Yersinia Intermedia Against ZnO Nanoparticles Either Synergism Antibiotics by Double-Disc Synergy Test Method

Background: Bacterial resistance to the commonly used antibacterial agents is an increasing challenge in the medicine, and a major problem for the health care systems; the control of  their spread  is a constant challenge for the hospitals. Objectives: In this study, we have investigated the antimicrobial activity of the Zinc Oxide nanoparticles against clinical sample; Yersinia intermedia bact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2018